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Abstract
A no-go result for integrable minimal N = 8 supersymmetric extensions
of KdV is found. However, allowing for non-associative realizations of the
extended supersymmetries, the first example of an N = 8 supersymmetric KdV
equation is explicitly constructed. It involves eight bosonic and eight fermionic
fields and corresponds to the unique N = 8 solution based on a generalized
Hamiltonian dynamics with (generalized) Poisson brackets given by the non-
associative N = 8 superconformal algebra. The complete list of inequivalent
classes of parametric-dependent N = 3 and N = 4 superKdVs obtained from
the ‘non-associative N = 8 SCA’ is also furnished. Furthermore, a fundamental
domain characterizing the class of inequivalent N = 4 superKdVs based on
the ‘minimal N = 4 SCA’ is given.

PACS numbers: 02.10.Hh, 02.20.Sv, 11.30.Pb, 02.30.Jr

1. Introduction

The construction and classification of lower dimensional dynamical systems with extended
(N) supersymmetries is a highly non-trivial problem, often investigated in connection with the
dimensional reduction of supersymmetric field theories. In [1], developing some methods
encountered in [2], a classification was presented for the matrix representations of 1D
N-extended supersymmetry algebras. Besides the 1D N-extended supersymmetric quantum
mechanical systems, this classification applies also to the extended supersymmetrizations of
classical non-linear equations in 1 + 1 dimensions.

On the other hand, matrix representations of extended supersymmetries are not the end
of the story. Indeed, an inequivalent realization of an N = 8 global supersymmetry makes
use of the non-associative octonionic structure constants (see [3]). A classification of these
non-associative realizations for generic N is now available [4].

The question we address in this paper is whether the non-associative realizations of
supersymmetries can lead to as yet undiscovered supersymmetric extensions of non-linear
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equations in 1 + 1 dimensions (to be specific, we work with the simplest of such systems, the
KdV equation).

It is worth mentioning that in the last several years bosonic integrable hierarchies of
non-linear differential equations in 1 + 1 dimensions have been intensely explored, mainly in
connection with the discretization of two-dimensional gravity (see [5]). Their supersymmetric
extensions have also been largely investigated [6–12] using a variety of different methods.
However, despite this activity, many questions are still unanswered.

The result of the present paper is negative, but still interesting and strong. It can be
regarded as an unexpected improvement of a no-go theorem. It was already known, for reasons
recalled later, that no superextension of KdV exists for N > 4 (the maximal superKdV is
for N = 4). This result, however, was based on the implicit assumption that the extended
supersymmetries were realized associatively. If we relax the condition of associativity and
allow for non-associative realizations, we have quite a different picture. Here we are able to
prove, this is the good news, that a non-associative N = 8 version of KdV indeed exists and,
moreover, it is unique. The bad news is that this unique system, the ‘non-associative N =
8 KdV’, is not integrable.

Our strategy is based on checking how many supersymmetries can be implemented as
invariance for the most general Hamiltonian of right dimension, admitting the ‘non-associative
N = 8 superconformalalgebra’ of Englert et al [13] as a generalized Poisson bracket structure.
The non-associativity of this algebra (i.e. its failure in fulfilling the Jacobi identities) allows
the presence of a central extension in its Virasoro subalgebra. For what concerns the ordinary
N-extended superconformal algebras, the classification and the list of their central extensions
have been produced in the mathematical literature [14]. Central charges are allowed for N � 4
only. The link with the (super)-KdV’s equations is based on the fact that the third-order higher
derivative term in the (super)-KdV equations is induced by the central extension of the Virasoro
(sub)algebra. For that reason, only supersymmetric generalizations of KdV up to N = 4 (both
integrable and non-integrable) have been constructed [7, 11] so far, consistently with the ‘old’
no-go theorem mentioned before.

The ‘non-associative N = 8 SCA’ involves eight bosonic and eight fermionic fields and
is constructed in terms of octonionic structure constants. Its restriction to the real, complex
or quaternionic subalgebras leads, respectively, to the ordinary N = 1, 2, 4 superconformal
algebras (in the last case, this is the so-called ‘minimal N = 4 SCA’).

The paper is constructed as follows. First, the N = 2, 4 KdV equations are revisited in
the language of division algebras, and a fundamental domain for the parametric space of the
inequivalent N = 4 KdVs is produced (our results complete and complement the work of
[11]).

Later, we apply the same techniques to investigate the global N = 8 invariance for the
most general Hamiltonian of correct dimension constructed with the eight bosonic and eight
fermionic fields entering the ‘non-associative N = 8 SCA’. If we further assume invariance
under the octonionic involutions, the Hamiltonian is unique up to the normalization factor,
giving rise to a unique set of N = 8 KdV equations. The high price we have to pay for
extending KdV up to N = 8 supersymmetries is its integrability. The non-integrability of the
N = 8 KdV is manifest when reducing the sets of equations to their quaternionic subspace.
As a consequence, the most symmetric (global SU(2)-invariant) set of N = 4 KdV equations
is produced. This N = 4 KdV system, however, does not correspond to the unique point
characterizing the integrable N = 4 KdV.

Following the authors of [15] who pointed out that global N = 2 supersymmetric systems
can be obtained from the ‘minimal N = 4 SCA’ Poisson brackets, we extend here such an
analysis by investigating the class of global N = 3 and N = 4 supersymmetric extensions
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of KdV which can be constructed with the fields satisfying the ‘non-associative N = 8 SCA’
generalized Poisson brackets. The complete solution is reported. In the N = 4 case two
inequivalent classes (both parametric dependent) of solutions are found. The existence of two
N = 4 classes is in consequence of the two inequivalent ways of associating three invariant
supersymmetry charges with imaginary octonions (i.e. either producing, or not, an su(2)

subalgebra), while the extra supersymmetry charge is always associated with the octonionic
identity. In the N = 3 case, just a single class of parametric solutions is found since any given
pair of imaginary octonions is equivalent to any other pair.

Some comments are in order. Based on the Sugawara relation [16] concerning the ‘non-
associative N = 8 SCA’ and the superaffined octonionic algebra, we can induce on the affine
fields a global N = 8 set of equations, generalizing both the NLS and mKdV equations, as
well as the N = 4 construction of [17].

We heavily relied on the Thieleman package for computing classical OPEs with
Mathematica [18], supported by our own package to deal with octonionic structure constants.

2. On division algebras and the ‘non-associative N = 8 SCA’

In this section we recall (see [16, 19]) the basic properties of the division algebra of the
octonions which will be used in the following and introduce the ‘non-associative N = 8
superconformal algebra’ according to [13] (see also [16]).

A generic octonion x is expressed as x = xaτa (throughout the text the convention over
repeated indices, unless explicitly mentioned, is understood), where xa are real numbers while
τa denote the basic octonions, with a = 0, 1, 2, . . . , 7.

τ0 ≡ 1 is the identity, while τα , for α = 1, 2, . . . , 7, denote the imaginary octonions. In
the following a greek index is employed for imaginary octonions, and a latin index for the
whole set of octonions (identity included).

The octonionic multiplication can be introduced through

τα · τβ = −δαβτ0 + Cαβγ τγ (1)

with Cαβγ a set of totally antisymmetric structure constants which, without loss of generality,
can be taken to be

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (2)

and vanishing otherwise.
It is also convenient to introduce, in the seven-dimensional imaginary octonions space, a

4-indices totally antisymmetric tensor Cαβγδ , dual to Cαβγ , through

Cαβγδ = 1
6εαβγ δεζηCεζη (3)

(the totally antisymmetric tensor εαβγ δεζη is normalized so that ε1234567 = +1).
The octonionic multiplication is not associative since for generic a, b, c we get

(τa · τb) · τc �= τa · (τb · τc). However, the weaker condition of alternativity is satisfied.
This means that, for a = b, the associator

[τa, τb, τc] ≡ (τa · τb) · τc − τa · (τb · τc) (4)

is vanishing.
The specialization of the octonionic indices to, let us say, 0, 1 or 0, 1, 2, 3 leads,

respectively, to the complex number or to the division algebra of quaternions.
The octonionic algebra admits seven involutions, specified by the mappings

τ0 �→ τ0 τp �→ τp τq �→ −τq (5)

where p takes a value in one of the seven triples entering (2), while q specifies the four
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complementary values. The three involutions for the quaternions (with two generators) are
recovered as the restrictions to the 0, 1, 2, 3 subspace.

The N = 8 extension of the Virasoro algebra (non-associative N = 8 SCA) involves
eight bosonic and eight fermionic fields and is constructed in terms of the octonionic structure
constants. Besides the spin-2 Virasoro field denoted as T, it contains eight fermionic spin- 3

2
fields Q,Qα and seven spin-1 bosonic currents Jα . It is explicitly given by the following
Poisson brackets:

{T (x), T (y)} = − 1
2∂y

3δ(x − y) + 2T (y)∂yδ(x − y) + T ′(y)δ(x − y)

{T (x),Q(y)} = 3
2Q(y)∂yδ(x − y) + Q′(y)δ(x − y)

{T (x),Qα(y)} = 3
2Qα(y)∂yδ(x − y) + Q′

α(y)δ(x − y)

{T (x), Jα(y)} = Jα(y)∂yδ(x − y) + J ′
α(y)δ(x − y)

{Q(x),Q(y)} = − 1
2∂y

2δ(x − y) + 1
2T (y)δ(x − y)

{Q(x),Qα(y)} = −Jα(y)∂yδ(x − y) − 1
2J ′

α(y)δ(x − y) (6)

{Q(x), Jα(y)} = − 1
2Qα(y)δ(x − y)

{Qα(x),Qβ(y)} = − 1
2δαβ∂y

2δ(x − y) + Cαβγ Jγ (y)∂yδ(x − y)

+ 1
2 (δαβT (y) + Cαβγ J ′

γ (y))δ(x − y)

{Qα(x), Jβ(y)} = 1
2 (δαβQ(y) − Cαβγ Qγ (y))δ(x − y)

{Jα(x), Jβ(y)} = 1
2δαβ∂yδ(x − y) − Cαβγ Jγ (y)δ(x − y).

Note the presence of the central term, essential in order to obtain supersymmetric KdV
equations. Due to the non-associativity of octonions the structure constants of (6) do not
satisfy the Jacobi identity (see [16] for a detailed discussion).

3. The N = 2 and the N = 4 KdVs revisited

By restricting the greek indices to take either the values 1 or 1, 2, 3, we recover from (6)
the N = 2 and the N = 4 superconformal algebras, respectively (in the case of N = 4 the
corresponding algebra is known as the ‘minimal N = 4 SCA’). They can be regarded as one
of the Poisson brackets for the N = 2 and the N = 4 KdVs [7, 11].

These non-linear equations can be constructed by looking for the most general
Hamiltonian with the right dimension (i.e. whose Hamiltonian density has dimension 4)
invariant under global supersymmetric charges given by

∫
dx Q(x) and

∫
dxQα(x). This

approach was used to construct the N = 2 KdV in [7], while the N = 4 KdV was obtained in
terms of a harmonic superspace formalism in [11].

For what concerns the N = 2 case we summarize here the results of [7]. We avoid writing
explicit formulae since they can be immediately recovered from a suitable reduction of the
N = 4 KdV results as discussed later. Up to a normalization factor, the N = 2 invariant
Hamiltonians depend on a single real parameter, denoted as ‘a’, which labels inequivalent
N = 2 KdVs. Three special values for a, i.e. a = −2, 1, 4, correspond to the three inequivalent
N = 2 KdV equations which are integrable [7, 10].

Here we extend the analysis of [7] to the N = 4 KdV case. In particular, we are able
to fully determine the moduli space of inequivalent N = 4 KdVs. Our results extend and
complete those originally appearing in [11].

The most general N = 4 invariant Hamiltonian of right dimension depends on five
parameters (apart from the overall normalization factor) and is explicitly given by
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H =
∫

dx

[
−2T 2 − 2Q′Q − 2Q′

αQα + 2J ′′
α Jα + xαT J 2

α + 2xαQQαJα − εαβγ xγ QαQβJγ

+
1

3
εαβγ (xβ − xα)JαJβJ ′

γ − 2zαεαβγ T JβJγ

− 2z1Q(Q2J3 + Q3J2) − 2z2Q(Q3J1 + Q1J3) − 2z3Q(Q1J2 + Q2J1)

+ 2z1Q1(Q2J2 − Q3J3) + 2z3Q3(Q1J1 − Q2J2) + 2z2Q2(Q3J3 − Q1J1)

− z1J
′
1

(
J 2

2 − J 2
3

) − z3J
′
3

(
J 2

1 − J 2
2

) − z2J
′
2

(
J 2

3 − J 2
1

)]
(7)

where the convention over repeated indices is understood and α, β, γ are restricted to 1, 2, 3,
while ε123 = 1.

In order to guarantee the N = 4 invariance, the three parameters xα must satisfy the
condition

x1 + x2 + x3 = 0 (8)

so that only two of them are truly independent (together with the three zα they provide the
five parameters mentioned above). However, the further requirement for the Hamiltonian to
be invariant not only under global N = 4 supersymmetry, but also under the three involutions
of the N = 4 superconformal algebra (obtained by flipping the sign of the four fields Jα,Qα ,
for α = 1, 2, α = 1, 3 and α = 2, 3 respectively, while leaving unchanged the remaining four
fields) kills the three zα parameters, which must be set equal to zero.

The most general Hamiltonian of such a kind is, therefore, given by

H =
∫

dx

[
−2T 2 − 2Q′Q − 2Q′

αQα + 2J ′′
α Jα + xαT J 2

α + 2xαQQαJα

− εαβγ xγ QαQβJγ +
1

3
εαβγ (xβ − xα)JαJβJ ′

γ

]
(9)

where of course (8) continues to hold.
Since any given ordered pair of the three parameters xα can be chosen to be plotted along

the x and y axes describing a real x–y plane, it can be easily proved that the fundamental domain
of the moduli space of inequivalent N = 4 KdV equations can be chosen to be the region of
the plane comprised between the real axis y = 0 and the y = x line (boundaries included).
Five other regions of the plane (all such regions are related via an S3-group transformation)
could as well be chosen as the fundamental domain.

In the region of our choice, the y = x line corresponds to an extra global U(1) invariance,
since the Hamiltonian whose parameters live in this line is in involution with the global charge∫

dx J3 (namely {H,
∫

dx · J3} = 0). The origin, that is x1 = x2 = x3 = 0, is the most
symmetric point, corresponding to a global SU(2) invariance, the given Hamiltonian being in
involution with respect to the three

∫
dx · Jα charges.

The equations of motion for the whole class of inequivalent N = 4 KdVs are given by

Ṫ = −T ′′′ − 12T ′T − 6Q′′Q − 6Q′′
αQα +

(
4 +

xα

2

)
J ′′′

α Jα +
3

2
xαJ

′′
α J ′

α + 3xα

(
T J 2

α

)′

+ 6xα(QQαJα)′ − 3xγ εαβγ (QαQβJγ )′ + εαβγ (xγ − xβ)(J ′′
α JβJγ − JαJ ′

βJ ′
γ )

Q̇ = −Q′′′ − 6(T Q)′ −
(

4 +
xα

2

)
(Q′

αJα)′ +
(

2 − xα

2

)
(QαJ ′

α)′ + 3xα

(
QJ 2

α

)′

− εαβγ (xγ − xβ)(QαJβJγ )′
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Q̇α = −Q′′′
α − 6(T Qα)′ +

(
4 +

xα

2

)
(Q′Jα)′ −

(
2 − xα

2

)
(QJ ′

α)′ + 3xβ

(
QαJ 2

β

)′

+ εαβγ (xγ − xβ)(QJβJγ )′ + εαβγ

(
4 +

xγ

2

)
(Q′

βJγ )′

− εαβγ

(
2 − xγ

2

)
(QβJ ′

γ )′ + 2(xβ − xα)(1 − δαβ)(JαQβJβ)′

J̇ α = −J ′′′
α −

(
4 +

xα

2

)
(T Jα)′ +

(
2 − xα

2

)
(QQα)′ − 2(xα + xβ)QαQβJβ

− εαβγ

(
1 − xα

4

)
(QβQγ )′ − 2εαβγ (xγ − xβ)QQβJγ

+ εαβγ

(
4 +

xγ

2

)
(J ′

βJγ )′ + 3xβJ ′
αJ 2

β + 2(1 − δαβ)(xβ − xα)JαJ ′
βJβ

(10)

where the constraint x1 + x2 + x3 = 0 is satisfied, and (x1, x2) takes a value either in the region
I ≡ {x1, x2|x2 � x1 � 0} or in II ≡ {x1, x2|x2 � x1 � 0}. Each given pair (x1, x2) ∈ I ∪ II

labels an inequivalent N = 4 KdV equation.
The three involutions (each one associated with any given imaginary quaternion) allow us

to perform three consistent reductions of the N = 4 KdV equation to an N = 2 KdV, by setting
simultaneously equal to 0 all the fields associated with the τ which flip the sign (compare the
discussion in the previous section). Therefore, the first involution allows us to consistently
set equal to zero the fields J2 = J3 = Q2 = Q3 = 0, leaving the N = 2 KdV equation
for the surviving fields T ,Q,Q1, J1. Similarly, the second and the third involutions allow
us to set equal to zero the four fields labelled by 1, 3 and 1, 2 respectively. It turns out that
for each such reduction only one free parameter survives, namely, x1, x2 or respectively x3.

This remaining free parameter coincides up to a normalization factor with the free
parameter a of [7]. More specifically

a = 1
4xα (11)

with α = 1, 2, 3 according to the reduction.
As a consequence, a necessary condition for the integrability of the N = 4 KdV requires

that for a given pair (x1, x2) ∈ I ∪ II each one of the three reductions produces for a one of
the known integrable values of a, namely, −2, 1, 4. It is then easily checked that there are
only two points in I ∪ II , both in the U(1)-invariant x1 = x2 line, implying integrability for
the three reduced N = 2 KdVs. The solutions are

(i) x1 = x2 = −8, (x3 = 16) and
(ii) x1 = x2 = 4, (x3 = −8).

Only the first point, which produces the a = −2 and the a = 4 integrable N = 2 KdVs
after reduction, corresponds to an integrable hierarchy [11].

4. The N = 8 superKdV

In this section we construct the first example of an N = 8 supersymmetric extension of the
KdV equation. In order to be able to realize an N = 8 KdV we extend the method discussed
in the previous section to the case of the ‘non-associative N = 8 superconformal algebra’ (6).
The reason why we are forced to make use of a non-associative algebra has been discussed in
the introduction.

More specifically, we started with the most general Hamiltonian of right dimension (its
Hamiltonian density having dimension equal to 4) constructed with the 16 (8 bosonic and 8
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fermionic) fields entering (6). Later we imposed some constraints on it. First we restricted
the free coefficients in order to make the resulting Hamiltonian invariant under the whole set
of seven involutions of the N = 8 superconformal algebra. This is the N = 8 extension of
a requirement already encountered in the N = 4 case. The seven involutions are so defined.
The fields T ,Q are unchanged, as well as the six fields Qα, Jα , for the α taking a value in
one of the seven triples entering (2). The eight remaining fields Qβ, Jβ , with β labelling
the four complementary values (for any given choice of the original triple), have the sign
flipped (Qβ �→ −Qβ, Jβ �→ −Jβ). After having constructed the most general Hamiltonian H
invariant under the whole set of seven involutions, we started imposing the invariance under
the N = 8 global supersymmetric transformations, that is we required{∫

dx · Qa(x),H

}
= 0 (12)

for a = 0, 1, 2, . . . , 7 (here Q0 ≡ Q), while {�, �} denotes the generalized Poisson brackets
given by the non-associative N = 8 SCA (6).

It is worth pointing out that for this generalized Hamiltonian system, the Poisson brackets
are assumed to be classical. In particular, they satisfy the Leibniz property (or, better, its
graded version due to the supersymmetry of (6)). The only feature of the non-associativity of
the octonions lies in the non-vanishing of the Jacobi identities for the structure constants of
the (6) algebra. The fields entering (6) are assumed to be ordinary (bosonic and fermionic)
real fields.

Needless to say, to get the final answer we heavily relied on Mathematica’s computations
for classical OPEs, based both on the Thielemans package [18] and on our own package to
deal with octonionic structure constants.

The final result is the following. There exists a unique Hamiltonian which is invariant
under the whole set of global N = 8 supersymmetries. It admits no free parameter (apart
from the trivial normalization factor) and is quadratic on the fields. It is explicitly given by

H2 = −2T 2 − 2Q′Q − 2Q′
αQα + 2J ′′

α Jα (13)

(here α = 1, 2, . . . , 7 and the summation over repeated indices is understood). This result
implies that there is only one N = 4 KdV system which can be consistently extended to N =
8 KdV, namely, the one which corresponds to the origin of the coordinates (x1 = x2 = x3 = 0),
that is the most symmetric point. While the corresponding Hamiltonian for the N = 4 case
admits a global SU(2) invariance, the N = 8 Hamiltonian (13) is invariant with respect to
each one of the seven global charges

∫
dx · Jα(x), that is{∫

dx · Jα(x),H

}
= 0. (14)

The seven charges
∫

dx · Jα(x) generate a symmetry which extends SU(2); it does not
correspond to a group due to the non-associative character of the octonions.

Despite the apparent simplicity and the fact that it is quadratic in the fields, the Hamiltonian
(13) generates an N = 8 supersymmetric extension of KdV which is not integrable, due to
the fact that its N = 4 KdV reduction does not correspond to the integrable point of the N =
4 KdV.

The equations of motion of the N = 8 KdV are obtained through

�̇i = {�i,H } (15)

where �i collectively denote the fields entering (6).
We explicitly obtain

Ṫ = −T ′′′ − 12T ′T − 6Q′′
aQa + 4J ′′′

α Jα

Q̇ = −Q′′′ − 6T ′Q − 6T Q′ − 4Q′′
αJα + 2QαJ

′′
α − 2Q′

αJ ′
α
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Q̇α = −Q′′′
α − 2QJ ′′

α − 6T Q′
α − 6T ′Qα + 2Q′J ′

α + 4Q′′Jα

− 2Cαβγ (QβJ ′′
γ − Q′

βJ ′
γ − 2Q′′

βJγ )

J̇ α = −J ′′′
α − 4T ′Jα − 4T J ′

α + 2QQ′
α + 2Q′Qα − Cαβγ (4JβJ ′′

γ + 2QβQ′
γ ).

(16)

It is a simple exercise to prove that the equations of motion (16) are compatible with the
N = 8 global supersymmetries generated by

∫
dx · Qa(x) (a = 0, 1, 2, . . . , 7) which provide

the transformations

δa�i(y) =
{∫

dx · Qa(x),�i(y)

}
. (17)

The above system of equations corresponds to the first known example of an N = 8
supersymmetric extension of KdV.

5. On global N = 3 and N = 4 extended superKdVs based on the N = 8 SCA

The authors of [15] proved the existence of systems, obtained in terms of the N = 4
superconformal algebra, which admit only an N = 2 global supersymmetry.

It is worth considering in our context, which involves a larger number of supersymmetries,
which kind of extended supersymmetric systems are supported by the non-associative N = 8
SCA. We present the complete analysis of the N = 3 and the N = 4 solutions. We construct
the most general N = 3 and N = 4 superextensions of KdV admitting the non-associative
N = 8 SCA as generalized Poisson brackets. Both such cases turn out to be parametric
dependent.

Apart from the unique N = 8 solution, N = 4 is the largest number of supersymmetries
which can be consistently imposed (by assuming an N > 4 invariance we automatically
recover the full N = 8 invariance).

Both in the N = 3 and the N = 4 cases, without loss of generality, one of the invariant
supersymmetric charges can always be assumed to be

∫
dx Q(x), with Q(x) entering (6). In the

N = 3 case the two remaining invariant supersymmetric charges (associated with imaginary
octonions) can be chosen at will, since all pairs of imaginary octonions are equivalent. In
the formula below, without loss of generality, we chose the invariant supersymmetric charges
being given by

∫
dx Q1(x) and

∫
dx Q2(x).

The situation is different in the N = 4 case. Now we have three extra invariant
supersymmetric charges to be associated with imaginary octonions. However, two inequivalent
ways of choosing a triple of imaginary octonions exist, depending on whether the chosen
triple corresponds to one of the seven values in (2) (i.e. the triples associated with an su(2)

subalgebra) or not. Two inequivalent classes of solutions, labelled by N = 4 (I) and N = 4
(II), are respectively obtained. The first (I) class can be individuated by choosing,
without loss of generality, the three extra supersymmetric charges to be given by∫

dx Q1(x),
∫

dx Q2(x) and
∫

dx Q3(x). The second class (II), without loss of generality,
can be produced by assuming invariance under

∫
dx Q1(x),

∫
dx Q2(x) and

∫
dx Q4(x).

Let us present now the complete solutions.
The most general N = 3 invariant Hamiltonian depends (up to the normalization factor)

on six free parameters entering x and xτ (τ = 1, 2, . . . , 7).
The seven xτ satisfy two constraints

x1 + x2 + x3 = 0 x4 + x5 + x6 + x7 = 0. (18)
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The most general Hamiltonian is given by

H =
∫

dx

[
−2T 2 − 2Q′Q − 2Q′

αQα + xQ′
µQµ + 2J ′′

α Jα − xJ ′′
µJµ + xαT J 2

αxµT J 2
µ

+ 2xαQQαJα + 2xµQQµJµ − xγ Cαβγ QαQβJγ − xνCαµνQαQµJν

+ (xµ + xν)CµναQµQνJα +
1

3
Cαβγ (xβ − xα)JαJβJ ′

γ + 2xµCαµνJαJµJ ′
ν

]

(19)

where α, β, γ are restricted to take the values 1, 2, 3, while µ, ν are restricted to the
complementary values 4, 5, 6, 7.

The equations of motion for this N = 3 generalization of KdV are directly computed
from (19) by applying the Poisson brackets, as in (15).

The complete set of equations is written down in 37 pages of LaTex. For that reason they
are not being reported here.

For what concerns the N = 4 cases, the (I) class of solutions involves three free
parameters (up to the normalization factor) entering x and xα (α = 1, 2, 3), where the xα

are constrained to satisfy x1 + x2 + x3 = 0.
The most general N = 4 invariant Hamiltonian of type (I) is given by

H =
∫

dx

[
−2T 2 − 2Q′Q − 2Q′

αQα + xQ′
µQµ + 2J ′′

α Jα − xJ ′′
µJµ + xαT J 2

α + xµT J 2
µ

+ 2xαQQαJα + 2xµQQµJµ − xγ Cαβγ QαQβJγ − xνCαµνQαQµJν

+ (xµ + xν)CµναQµQνJα +
1

3
Cαβγ (xβ − xα)JαJβJ ′

γ + 2xµCαµνJαJµJ ′
ν

]
.

(20)

As before α, β, γ = 1, 2, 3, while µ, ν take the values 4, 5, 6, 7.
The N = 4 (I) equations of motion are explicitly given by

Ṫ = −T ′′′ − 12T ′T − 6Q′′Q − 6Q′′
αQα +

(
4 +

xα

2

)
J ′′′

α Jα +
3

2
xαJ

′′
α J ′

α + 3xQ′′
µQµ

− 2xJ ′′′
µ Jµ + 3xα

(
T J 2

α

)′
+ 6xα(QQαJα)′ − 3xγ Cαβγ (QαQβJγ )′

+ Cαβγ (xγ − xβ)(J ′′
α JβJγ − JαJ ′

βJ ′
γ )

Q̇ = −Q′′′ − 6(T Q)′ −
(

4 +
xα

2

)
(Q′

αJα)′ +
(

2 − xα

2

)
(QαJ ′

α)′ + 2x(Q′
µJµ)′

− x(QµJ ′
µ)′ + 3xα

(
QJ 2

α

)′ − Cαβγ (xγ − xβ)(QαJβJγ )′

Q̇α = −Q′′′
α − 6(T Qα)′ +

(
4 +

xα

2

)
(Q′Jα)′ −

(
2 − xα

2

)
(QJ ′

α)′ + 3xβ

(
QαJ 2

β

)′

− 2xCαµν(Q
′
µJν)

′ + xCαµν(QµJ ′
ν)

′ + Cαβγ (xγ − xβ)(QJβJγ )′

+ Cαβγ

(
4 +

xγ

2

)
(Q′

βJγ )′ − Cαβγ

(
2 − xγ

2

)
(QβJ ′

γ )′

+ 2(xβ − xα)(1 − δαβ)(JαQβJβ)′

Q̇µ = x

2
Q′′′

µ + (x − 4)T Q′
µ − 6T ′Qµ + 4Q′′Jµ + 2Q′J ′

µ + xQJ ′′
µ + 4CµανQ

′′
αJν

+ 2CµανQ
′
αJ ′

ν + xCµανQαJ ′′
ν − 2xCµναQ′′

νJα − xCµναQ′
νJ

′
α

− 2CµναQνJ
′′
α + xαCµανQQαQν − xαCµανQJαJ ′

ν

− 2xαCµανQJ ′
αJν − 2xαCµανQ

′JαJν + 2xαQ
′
αJαJµ

+ xαQ
′
µJ 2

α + 3xαQµJ ′
αJα − xαCµναT QνJα + xαQαJαJ ′

µ + 2xαQαJ ′
αJµ
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+
1

2
Cµαβν(xα + xβ)QαQβQν − 2xβCµαβνQ

′
αJβJν + xαCµναβQνJαJ

′
β

− 2xβCµαβνQαJ ′
βJν − xβCµαβνQαJβJ ′

ν

J̇ α = −J ′′′
α −

(
4 +

xα

2

)
(T Jα)′ +

(
2 − xα

2

)
(QQα)′ − 2(xα + xβ)QαQβJβ

− Cαβγ

(
1 − xα

4

)
(QβQγ )′ + xCαµνQ

′
µQν − 2Cαβγ (xγ − xβ)QQβJγ

+ Cαβγ −
(

4 +
xγ

2

)
(J ′

βJγ )′ − 2xCαµνJ
′′
µJν + 3xβJ ′

αJ 2
β

+ 2(1 − δαβ)(xβ − xα)JαJ ′
βJβ

J̇ µ = 1
2xJ ′′′

µ − 4(T Jµ)′ + 2Q′Qµ − xQQ′
µ − 2CµανQ

′
αQν + xCµανQαQ′

ν − 4CµναJ ′′
ν Jα

+ 2xCµανJαJ ′′
ν + 2xαCµανT JαJν − xαCµναQQνJα + 2xαCµανQQαJν

+ xαQαJαQµ + xαJ
′
µJ 2

α + 2xJ ′
αJαJµ + 2xαCµαβνJαJ ′

βJν

+ xβCµαβνQαJβQν + (xα + xβ)CµαβνQαQβJν.

(21)

The second (II) class of N = 4 solutions is two parametric. The free parameters can be
chosen to be x1 and x2, while the remaining xτ parameters entering the Hamiltonian below are
restricted to be

x3 = x4 = −(x1 + x2) x5 = 0 x6 = x1 x7 = x2. (22)

The most general N = 4 (II) Hamiltonian is given by

H =
∫

dx

[
−2T 2 − 2Q′Q − 2Q′

αQα + 2J ′′
α Jα + xαT J 2

α + 2xαQQαJα

+ Cρσλ(xρ + xσ )QρQσ Jλ + Cρλσ (xρ + xλ)QρQλJσ − Cλµν(xλ + xµ)QλQµJν

+ Cλµρ(xλ + xµ)QλQµJρ + 2xµCλµρQλJµQρ − 2xρCρλσ JρJλJ
′
σ

+
1

3
Cµνλ(xµ − xν)JµJνJ

′
λ − 2xµCµρνJµJρJ

′
ν

]
(23)

where now α = 1, 2, . . . , 7, while ρ, σ = 1, 2, 4 and λ,µ, ν = 3, 5, 6, 7.
The complete set of equations of motion for the N = 4 (II) case occupies 13 pages of

LaTex. Just like the N = 3 case and contrary to the N = 4 (I) case, these equations of
motion cannot be easily compactified since the field labels 1 ↔ 2, 3, 4, 5 and 6 ↔ 7 all play
a different role.

Let us conclude this section with a final comment. The two classes (I) and (II) of N = 4
solutions are obviously inequivalent. For what concerns the first class we can notice that by
suitably choosing the parameters xα being given by x1 = x2 = −8(x3 = 16), the resulting
generalized KdV system extends the integrable N = 4 KdV based on the ‘minimal N = 4
SCA’. This leaves the possibility that the N = 4 (I) KdV, for the given values of the xα

parameters and for some x �= 0, could be an integrable system.

6. Conclusions

In this paper, we addressed the problem of whether large N supersymmetric extensions of
the KdV equation could be obtained from the non-associative, octonionic realizations of the
extended supersymmetries [3, 4]. The ‘non-associative N = 8 superconformal algebra’
introduced in [13] (the ‘non-associativity’ referring to the fact that this superalgebra does not
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satisfy the super-Jacobi identities) was investigated as a possible generalized super-Poisson
brackets structure for an N = 8 KdV, with eight bosonic and eight fermionic fields. Our
results can be stated as follows. A previous no-go theorem, discarding the possibility of
extended superKdVs for N > 4, on the basis of the absence of the central extensions for the
(associative) superconformal algebras with N > 4 [14], is overcome. A new no-go theorem
takes its place. A non-associative N = 8 KdV system indeed exists and is unique. However, it
is not integrable. We further investigated and classified the N supersymmetric extensions (for
N > 2) of KdV supported by the ‘non-associative N = 8 SCA’ generalized Poisson brackets.
The complete results are reported here. Besides the unique N = 8 case, extensions are found
for N = 3 and N = 4.

The class of solutions of the N = 3 case depends on six free parameters and is given
in formula (19). For what concerns the N = 4 cases, two inequivalent classes of solutions,
named ‘(I)’ and ‘(II)’, are found. The first class depends on three free parameters, while the
second one depends on just two free parameters. They are given in formulae (20) and (23),
respectively. For a convenient choice of the parameters of the class (I) solution, the resulting
system of equations generalizes the integrable point of the ‘minimal’ N = 4 KdV, leaving
room for the possibility that a global N = 4 system involving the whole set of N = 8 SCA
fields could correspond to an integrable hierarchy.

Concerning the issue of integrability,some further remarks are needed. The non-integrable
N = 8 KdV is unique and cannot be deformed (its Hamiltonian has been determined from the
most general class of Hamiltonians with the right dimension, by brute force computer-aided
methods). It corresponds to a minimal extension of the N = 8 KdV (i.e. with minimal number,
eight, of bosonic and fermionic fields). At this stage of the investigation the possibility of non-
minimal integrable N = 8 KdVs with a larger number of bosonic and fermionic fields cannot
be ruled out. In this case, however, it is not even clear whether a Poisson brackets structure with
non-trivial central charges generalizing the ‘non-associative N = 8 SCA’ even exists. Another
open possibility concerns the non-linear realizations of the extended supersymmetries. In this
case as well very little can be said since one cannot rely on the mathematical classifications
available for the ‘old’ (associative) and ‘new’ (non-associative) no-go theorems.

Finally, it is worth mentioning that at least in one work [20] an octonionic model is
discussed and proven integrable. It deserves investigation whether the techniques developed
there could help in addressing the issue of integrability for the global N = 4 system given in
formula (20).

Acknowledgment

We are grateful to the referee for useful remarks and for having pointed [20] out to us.

References

[1] Pashnev A and Toppan F 2001 J. Math. Phys. 42 5257
[2] Gates S J Jr and Rana L 1995 Phys. Lett. B 352 50

Gates S J Jr and Rana L 1996 Phys. Lett. B 369 262
[3] Toppan F 2001 Nucl. Phys. Proc. Suppl. B 102 270
[4] Carrion H L, Rojas M and Toppan F 2002 Octonionic realizations of 1-dimensional extended supersymmetries.

A classification Preprint hep-th/0212030
[5] Di Francesco P, Ginsparg P and Zinn-Justin J 1995 Phys. Rep. 254 1
[6] Manin Yu I and Radul A O 1985 Commun. Math. Phys. 98 65

Kulish P P 1985 Lett. Math. Phys. 10 87



3820 H L Carrion et al

[7] Mathieu P 1988 Phys. Lett. 203 287
Laberge C A and Mathieu P 1988 Phys. Lett. B 215 718
Labelle P and Mathieu P 1991 J. Math. Phys. 32 923

[8] Chaichian M and Lukierski J 1988 Phys. Lett. B 212 461
[9] Inami T and Kanno H 1991 Commun. Math. Phys. 136 519

Inami T and Kanno H 1992 Int. J. Mod. Phys. A 7 419
[10] Popowicz Z 1993 Phys. Lett. A 174 411

Popowicz Z 1994 Phys. Lett. A 194 375
Popowicz Z 1996 J. Phys. A: Math. Gen. 29 1281
Popowicz Z 1997 J. Phys. A: Math. Gen. 30 7935
Popowicz Z 1999 Phys. Lett. B 459 150

[11] Delduc F and Ivanov E 1993 Phys. Lett. B 309 312
Delduc F, Ivanov E and Krivonos S 1996 J. Math. Phys. 37 1356

[12] Gates S J Jr and Rana L 1996 Phys. Lett. B 369 269
[13] Englert F, Sevrin A, Troost W, van Proeyen A and Spindel P 1988 J. Math. Phys. 29 281
[14] Grozman P, Leites D and Shchepochkina I 1997 Lie superalgebras of string theories Preprint hep-th/9702120
[15] Delduc F, Gallot L and Ivanov E 1997 Phys. Lett. B 396 122
[16] Carrion H L, Rojas M and Toppan F 2001 Phys. Lett. A 291 95
[17] Ivanov E, Krivonos S and Toppan F 1997 Phys. Lett. B 405 85
[18] Thielemans K 1991 Int. J. Mod. Phys. C 2 787
[19] Günaydin M and Ketov S V 1996 Nucl. Phys. B 467 215
[20] Grabowski M P and Mathieu P 1995 J. Math. Phys. 36 5340


